Inferring global topology from local juxtaposition geometry: interlinking polymer rings and ramifications for topoisomerase action.
نویسندگان
چکیده
Lattice modeling is applied to investigate how the configurations of local chain juxtapositions may provide information about whether two ring polymers (loops) are topologically linked globally. Given a particular juxtaposition, the conditional probability that the loops are linked is determined by exact enumeration and extensive Monte Carlo sampling of conformations satisfying excluded volume constraints. A discrimination factor fL, defined as the ratio of linked to unlinked probabilities, varies widely depending on which juxtaposition is presumed. /log fL/s that are large for small loop size n tend to decrease, signaling diminishing topological information content of the juxtapositions, with increasing n. However, some juxtaposition geometries can impose sufficient overall conformational biases such that /log fL/ remains significant for large n. Notably, for two loops as large as n=200 in the model, the probability that passing the segments of a hooked juxtaposition would unlink an originally linked configuration is remarkably high, approximately 85%. In contrast, segment-passage of a free juxtaposition would link the loops from an originally unlinked configuration more than 90% of the time. The statistical mechanical principles emerging from these findings suggest that it is physically possible for DNA topoisomerases to decatenate effectively by acting selectively on juxtapositions with specific "hooked" geometries.
منابع مشابه
Topological information embodied in local juxtaposition geometry provides a statistical mechanical basis for unknotting by type-2 DNA topoisomerases.
Topoisomerases may unknot by recognizing specific DNA juxtapositions. The physical basis of this hypothesis is investigated by considering single-loop conformations in a coarse-grained polymer model. We determine the statistical relationship between the local geometry of a juxtaposition of two chain segments and whether the loop is knotted globally, and ascertain how the knot/unknot topology is...
متن کاملLocal sensing of global DNA topology: from crossover geometry to type II topoisomerase processivity
Type II topoisomerases are ubiquitous enzymes that control the topology and higher order structures of DNA. Type IIA enzymes have the remarkable property to sense locally the global DNA topology. Although many theoretical models have been proposed, the molecular mechanism of chiral discrimination is still unclear. While experimental studies have established that topoisomerases IIA discriminate ...
متن کاملAction at hooked or twisted-hooked DNA juxtapositions rationalizes unlinking preference of type-2 topoisomerases.
The mathematical basis of the hypothesis that type-2 topoisomerases recognize and act at specific DNA juxtapositions has been investigated by coarse-grained lattice polymer models, showing that selective segment passages at hooked juxtapositions can result in dramatic reductions in catenane and knot populations. The lattice modeling approach is here extended to account for the narrowing of vari...
متن کاملTopoisomerase II, not topoisomerase I, is the proficient relaxase of nucleosomal DNA.
Eukaryotic topoisomerases I and II efficiently remove helical tension in naked DNA molecules. However, this activity has not been examined in nucleosomal DNA, their natural substrate. Here, we obtained yeast minichromosomes holding DNA under (+) helical tension, and incubated them with topoisomerases. We show that DNA supercoiling density can rise above +0.04 without displacement of the histone...
متن کاملComputerized Linking of Capital Markets - A Viable Approach
Interlinking capital markets has always been an interesting issue since it not only provides more investment opportunities but also results in reduction of the risk of market volatility due to increase in the size of market. However, global and local barriers like different currencies, legal issues, settlement risks and costs prevent such interlink age to take place efficiently. In this paper, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 90 7 شماره
صفحات -
تاریخ انتشار 2006